Key Glycolytic Enzyme Activities of Skeletal Muscle Are Decreased under Fed and Fasted States in Mice with Knocked Down Levels of Shc Proteins
نویسندگان
چکیده
Shc proteins interact with the insulin receptor, indicating a role in regulating glycolysis. To investigate this idea, the activities of key glycolytic regulatory enzymes and metabolites levels were measured in skeletal muscle from mice with low levels of Shc proteins (ShcKO) and wild-type (WT) controls. The activities of hexokinase, phosphofructokinase-1 and pyruvate kinase were decreased in ShcKO versus WT mice under both fed and fasted conditions. Increased alanine transaminase and branched-chain amino acid transaminase activities were also observed in ShcKO mice under both fed and fasting conditions. Protein expression of glycolytic enzymes was unchanged in the ShcKO and WT mice, indicating that decreased activities were not due to changes in their transcription. Changes in metabolite levels were consistent with the observed changes in enzyme activities. In particular, the levels of fructose-2,6-bisphosphate, a potent activator of phosphofructokinase-1, were consistently decreased in the ShcKO mice. Furthermore, the levels of lactate (inhibitor of hexokinase and phosphofructokinase-1) and citrate (inhibitor of phosphofructokinase-1 and pyruvate kinase) were increased in fed and fasted ShcKO versus WT mice. Pyruvate dehydrogenase activity was lower in ShcKO versus WT mice under fed conditions, and showed inhibition under fasting conditions in both ShcKO and WT mice, with ShcKO mice showing less inhibition than the WT mice. Pyruvate dehydrogenase kinase 4 levels were unchanged under fed conditions but were lower in the ShcKO mice under fasting conditions. These studies indicate that decreased levels of Shc proteins in skeletal muscle lead to a decreased glycolytic capacity in both fed and fasted states.
منابع مشابه
Mice with low levels of Shc proteins display reduced glycolytic and increased gluconeogenic activities in liver
Shc proteins play a role in energy metabolism through interaction with the insulin receptor. The aim of this study was to determine whether Shc proteins influence liver glycolysis and gluconeogenesis under both fed and fasted states. Decreased glycolytic and increased gluconeogenic and transamination enzyme activities were observed in ShcKO versus WT mice. Levels of key regulatory metabolites, ...
متن کاملUrsolic acid induces myoglobin expression and skeletal muscle remodeling in mice
Introduction: Ursolic Acid (UA) is a lipophilic triterpenoid compound, found in large amounts in apple peel. Anabolic effects of UA on the skeletal muscle and the role of this tissue as a key regulator of systematic aging aroused this question in mind whether UA might amend skeletal muscle performances such as myoglobin expression and also whether it switches skeletal muscle fibers from glyc...
متن کاملEffects of Feeding and Food Deprivation on Oxygen Consumption, Muscle Protein Concentration and Activities of Energy Metabolism Enzymes in Muscle and Brain of Shallow-living (scorpaena Guttata) and Deep-living (sebastolobus Alascanus) Scorpaenid Fishes
The effects of feeding and fasting were examined on the deep-living short-spine thornyhead (Sebastolobus alascanus) and the confamilial shallow-living spotted scorpionfish (Scorpaena guttata) to determine whether the low metabolic rate of the deeper-living species was in part a consequence of food deprivation in its habitat. Laboratory acclimation for periods of 90–115 days under either ad libi...
متن کاملMouse skeletal muscle fiber-type-specific macroautophagy and muscle wasting are regulated by a Fyn/STAT3/Vps34 signaling pathway.
Skeletal muscle atrophy induced by aging (sarcopenia), inactivity, and prolonged fasting states (starvation) is predominantly restricted to glycolytic type II muscle fibers and typical spares oxidative type I fibers. However, the mechanisms accounting for muscle fiber-type specificity of atrophy have remained enigmatic. In the current study, although the Fyn tyrosine kinase activated the mTORC1...
متن کاملThe Effect of Resistance and Progressive Training on HSP 70 and Glucose
Skeletal muscle may develop adaptive chaperone and enhancementdefense system through daily exercisestimulation. The present study investigated resistance and exhaustion training alters the expression of chaperoneproteins. These proteins function to maintain homeostasis, facilitate repair from injury and provide protection. Exercise-induced production of HSPs in skeletal muscle and peripheral le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015